17 research outputs found

    Highly efficient singular surface plasmon generation by achiral apertures

    Full text link
    We report a highly efficient generation of singular surface plasmon (SP) field by an achiral plasmonic structure consisting of Λ\Lambda-shaped apertures. Our quantitative analysis based on leakage radiation microscopy (LRM) demonstrates that the induced spin-orbit coupling can be tuned by adjusting the apex angle of the Λ\Lambda-shaped aperture. Specifically, the array of Λ\Lambda-shaped apertures with the apex angle 6060^\circ is shown to give rise to the directional coupling efficiency. The ring of Λ\Lambda-shaped apertures with the apex angle 6060^\circ realized to generate the maximum extinction ratio (ER=11) for the SP singularities between two different polarization states. This result provides a more efficient way for developing SP focusing and SP vortex in the field of nanophotonics such as optical tweezers

    Directional and singular surface plasmon generation in chiral and achiral nanostructures demonstrated by Leakage Radiation Microscopy

    Full text link
    In this paper, we describe the implementation of leakage radiation microscopy (LRM) to probe the chirality of plasmonic nanostructures. We demonstrate experimentally spin-driven directional coupling as well as vortex generation of surface plasmon polaritons (SPPs) by nanostructures built with T-shaped and Λ\Lambda- shaped apertures. Using this far-field method, quantitative inspections, including directivity and extinction ratio measurements, are achieved via polarization analysis in both image and Fourier planes. To support our experimental findings, we develop an analytical model based on a multidipolar representation of Λ\Lambda- and T-shaped aperture plasmonic coupler allowing a theoretical explanation of both directionality and singular SPP formation. Furthermore, the roles of symmetry breaking and phases are emphasized in this work. This quantitative characterization of spin-orbit interactions paves the way for developing new directional couplers for subwavelength routing

    Tamm plasmon Photonic Crystals : from Bandgap Engineering to Defect Cavity

    Full text link
    We report for the first time the bandgap engineering of Tamm plasmon photonic crystals - Tamm plasmon structures of which the metalic layer is periodically patterned into lattice of subwavelength period. By adopting a double period design, we evidenced experimentally a complete photonic bandgap up to 150nm150\,nm in the telecom range. Moreover, such design offers a great flexibility to tailor on-demand, and independently, the band-gap size from 30nm30\,nm to 150nm150\,nm and its spectral position within 50nm50\,nm. Finally, by implementing a defect cavity within the Tamm plasmon photonic crystal, an ultimate cavity of 1.6μm1.6\mu m supporting a single highly confined Tamm mode is experimentally demonstrated. All experimental results are in perfect agreement with numerical calculations. Our results suggests the possibility to engineer novel band dispersion with surface modes of hybrid metalic/dielectric structures, thus open the way to Tamm plasmon towards applications in topological photonics, metamaterials and parity symmetry physics

    Taming Friedrich-Wintgen interference in resonant metasurface: vortex laser emitting at on-demand tilted-angle

    Full text link
    Friedrich-Wintgen (FW) interference is an atypical coupling mechanism that grants loss exchange between leaky resonances in non-Hermitian classical and quantum systems. Intriguingly, such an mechanism makes it possible for destructive interference scenario in which a radiating wave becomes a bound state in the continuum (BIC) by giving away all of its losses. Here we propose and demonstrate experimentally an original concept to tailor FW-BICs as polarization singularity at on-demand wavevectors in optical metasurface. As a proof-of-concept, using hybrid organic-inorganic halide perovskite as active material, we empower this novel polarization singularity to obtain lasing emission exhibiting both highly directional emission at oblique angles and polarization vortex in momentum space. Our results pave the way to steerable coherent emission with tailored polarization pattern for applications in optical communication/manipulation in free-space, high-resolution imaging /focusing and data storage

    Strong Coupling between Plasmons and Organic Semiconductors

    No full text
    In this paper we describe the properties of organic material in strong coupling with plasmon, mainly based on our work in this field of research. The strong coupling modifies the optical transitions of the structure, and occurs when the interaction between molecules and plasmon prevails on the damping of the system. We describe the dispersion relation of different plasmonic systems, delocalized and localized plasmon, coupled to aggregated dyes and the typical properties of these systems in strong coupling. The modification of the dye emission is also studied. In the second part, the effect of the microscopic structure of the organics, which can be seen as a disordered film, is described. As the different molecules couple to the same plasmon mode, an extended coherent state on several microns is observed

    Strong Coupling between Plasmons and Organic Semiconductors

    No full text
    In this paper we describe the properties of organic material in strong coupling with plasmon, mainly based on our work in this field of research. The strong coupling modifies the optical transitions of the structure, and occurs when the interaction between molecules and plasmon prevails on the damping of the system. We describe the dispersion relation of different plasmonic systems, delocalized and localized plasmon, coupled to aggregated dyes and the typical properties of these systems in strong coupling. The modification of the dye emission is also studied. In the second part, the effect of the microscopic structure of the organics, which can be seen as a disordered film, is described. As the different molecules couple to the same plasmon mode, an extended coherent state on several microns is observed

    Active control of radiation beaming from Tamm nanostructures by optical microscopy

    No full text
    International audienceActive control of the radiation orientation (beaming) of a metallic antenna has been reported by various methods, where the antenna excitation position was tuned with a typical 50 nm precision by a near-field tip or an electron-beam. Here we use optical microscopy to excite and analyze the fluorescence of a layer of nanocrystals embedded in an optical Tamm state nanostructure (metallic disk on top of a Bragg mirror). We show that the radiation pattern can be controlled by changing the excitation spot on the disk with only micrometer precision, in a manner which can be well described by numerical simulations. A simplified analytical model suggests that the propagation length of the in-plane confined optical modes is a key parameter for beaming control

    Manifestation of Planar and Bulk Chirality Mixture in Plasmonic Λ‑Shaped Nanostructures Caused by Symmetry Breaking Defects

    No full text
    We report on the coexistence of planar and bulk chiral effects in plasmonic Λ-shaped nanostructure arrays arising from symmetry breaking defects. The manifestation of bi- (2D) and three-dimensional (3D) chiral effects are revealed by means of polarization tomography and confirmed by symmetry considerations of the experimental Jones matrix. Notably, investigating the antisymmetric and symmetric parts of the Jones matrix points out the contribution of 2D and 3D chirality in the polarization conversion induced by the system whose eigenpolarizations attest to the coexistence of planar and bulk chirality. Furthermore, we introduce a generalization of the microscopic model of Kuhn, yielding to a physical picture of the origins of the observed planar chirality, circular birefringence, and dichroism, theoretically prohibited in symmetric Λ-shaped nanostructures
    corecore